

# A Cotton Irrigator's Decision Support System Using National, Regional and Local Data

#### ISESS 2015, Melbourne

Jamie Vleeshouwer, Nicholas J. Car, John Hornbuckle 26 March 2015

LAND & WATER FLAGSHIP / AGRICULTURE FLAGSHIP www.csiro.au



# Irrigation in the cotton industry

- Background
  - Water is scarce
  - Irrigation entitlements for regions
  - Farmers maximise revenue by getting best return on water "more crop per drop"
- IrriSATSMS
  - Weather/Sattelite based irrigation decision support system
  - Provide information on how much to irrigate
  - SMS User Interface
  - Has become outdated
- IrriSAT Next Gen
  - Use modern technology / automation
  - Add forecasting (7 days) / benchmarking functionality





#### How much water should I use?



# What are we doing about it?

- IrriSAT weather-based irrigation scheduling service
- Satellite imagery determines crop coefficients (Kc) to calculate crop water requirements and provides customised scheduling information
- Irrigation scheduling with:
  - low-cost
  - wide coverage
- Add value not replace existing methods
- Daily water balance updated in real time
- Targeting smartphone interfaces as well as web





# How will it work?





## What could we improve upon?

- What didn't work well in the previous system
  - Satellite processing was all manual (lots of time, effort, data storage)
  - Data entry errors (SMS autocorrect interfering)
  - Had commercial interest but too complex to transfer
  - Tightly coupled
- How technology has evolved
  - Cloud computing
  - Web services
  - High performance computing
  - Increased usage of smartphones / tablets



After many thoughts, discussions and experimentation...

#### **System Architecture Overview**



# **Google Earth Engine**

- Not to be confused with Google Earth
- Develop and run algorithms on large satellite imagery archives (Landsat, MODIS, etc)
- Access web services via restful API
  - Python
  - Javascript
- Runs in real-time on Google's parallel processing platform
- Just-In-Time distributed model
- Ideal for IrriSAT
  - Define a field and analyse instantly
  - Data archive constantly being updated
  - No need to manage any data



# Our approach for determining Kc

- Landsat Sources 30 m (operational missions)
  - Landsat 8 OLI
  - Landsat 7 ETM+
- 16 Days to orbit earth
- LS8 and LS7 offset 8 days from each other
- Combining provides full coverage every 8 days



#### Landsat 7









# Computing Kc (the workflow)



1

# **Computing Kc (spatial representation)**

1

csiro



### Generating time series data for a field

1

- Spatial algorithm can be reused in time domain
- Aggregation of pixels over a field (ie Kc, Field visibility)
- Again, execution occurs in real-time on Google's servers



# **Google App Engine**

- Cloud computing platform we are using to host IrriSAT
  - Scalable Create new app instances when heavy loads occur
  - Cheap free so far
- Platform as a Service (PlaaS)
  - App managed via a web console
  - No need to worry about operating system specifics, DBA's etc
- Develop in: Python, Java, PHP, Go (Python for IrriSAT)
- Simple to transfer to industry if opportunity comes along again

2

| Google Developers                                                                                              |                                                                                       |                                                            |                      |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|
| Credentials<br>Consent screen                                                                                  | Project ID: irrisat-cloud Project Number: 97515953                                    | 25335 Estimated charges this month: \$0.00<br>details      |                      |
| Push<br>Monitoring                                                                                             | Activity for the last 4 days 1 h                                                      | wour 6h 12h 1 day 2d 4d 7d 14d 30d                         |                      |
| Traces<br>Logs                                                                                                 | App Engine                                                                            | APIs                                                       | Developer            |
| Dashboards & alerts ⊡<br>Source Code<br>Browse                                                                 | Summary<br>Count/sec                                                                  | Requests<br>Requests/sec                                   | Developer<br>Console |
| Releases<br>Developer tools                                                                                    | 0.3                                                                                   | 0.06 MMW Martuhulum marting Will MM                        | Console              |
| Compute<br>App Engline<br>Dashboard<br>Instances<br>Versions<br>Task queues<br>Security scans<br>Quota details | 0.2<br>0.1<br>Mar 23 Mar 25, 6:37<br>Requests: 0.0233 Axx client: 0<br>Sixx server: 0 | 0.04<br>0.02<br>Mar 23 Mar 25, 6:37 PM<br>Requests: 0.0511 |                      |
| ~                                                                                                              | Errors by status code                                                                 |                                                            |                      |

# Weather Station Data (ETo)

- Sensor Observation Service
  - Standardised Web service interface to
    - Query observation data
    - Sensor metadata
    - Features over the web
  - OGC specification XML/O&M/GML/SensorML Markups
- 3 Core methods
  - GetCapabilities offeres operations and endpoints as well as the available sensor data
  - GetObservation observed values, including their metadata
  - DescribeSensor provides sensor metadata (location, parameters, etc)

```
/ <om:result>
v <wml2:MeasurementTimeseries gml:id="timeseries.1">
  <wml2:metadata>
  <wml2:defaultPointMetadata>
     <wml2:point>
        <wml2:MeasurementTVP>
          <wml2:time> 2009-11-12T14:00:00.000Z </wml2:time>
          <wml2:value> 0.0 </wml2:value>
       </wml2:MeasurementTVP>
     </wml2:point>
     <wml2:point>
       <wml2:MeasurementTVP>
          <wml2:time> 2009-11-12T15:00:00.000Z </wml2:time>
          <wml2:value> 0.0 </wml2:value>
       </wml2:MeasurementTVP>
     </wml2:point>
     <wml2:point>
       <wml2:MeasurementTVP>
          <wml2:time> 2009-11-12T16:00:00.000Z </wml2:time>
          <wml2:value> 0.0 </wml2:value>
       </wml2:MeasurementTVP>
     </wml2:point>
```

3

SIR

GetObservation Response

Enable Google Cloud Platform to access Weather Observations within CSIRO

### **Current Users**

- Farmers (around Moree, NSW + southern QLD)
- Consultants (HMAg, Sundown Pastoral Company)
- DPI Studying water use efficiency between different irrigation setups (spatial variation)
  - Spray
  - Drip, etc
- Software Engineers building other products on top of IrriSAT API



### **Future challenges**

- Complex irrigation regimes
  - Refine the accuracy and ability of the system to meet cotton growers' needs
  - Buffering?
  - Multipolygon?
  - Further algorithms to auto detect roads? Etc
- Decision Support Systems
  - Too complex = won't use
  - Too simple = not useful



### How users are actually using IrriSAT

"This saved me 4 months of work"...





# Conclusions

- IrriSAT will provide *real time* crop water use at *broad scale* and *low cost*
- Work to date (enabling data services): **ETc = ETo x Kc**
- Future work involves: refining the *accuracy*; incorporating 7 *day forecast* of irrigation demand; and also *benchmarking* against nearby fields.
- Visit the IrriSAT website: <u>www.irrisat-cloud.appspot.com</u>



# Thank you

# Land and Water Flagship Jamie Vleeshouwer Software Engineer

- **t** +61 7 3833 5589
- e jamie.vleeshouwer@csiro.au w www.csiro.au

LAND & WATER FLAGSHIP / AGRICULTURE FLAGSHIP www.csiro.au

